Down-Regulation of the RNA Editing Enzyme ADAR2 Contributes to RGC Death in a Mouse Model of Glaucoma
نویسندگان
چکیده
Glaucoma is a progressive neurodegenerative disease of retinal ganglion cells (RGCs) associated with characteristic axon degeneration in the optic nerve. Excitotoxic damage due to increased Ca(2+) influx, possibly through NMDA-type glutamate receptors, has been proposed to be a cause of RGC dysfunction and death in glaucoma. Recent work has found that expression of another potentially critical receptor, the Ca(2+)-permeable AMPA receptor (CP-AMPAR), is elevated during various pathological conditions (including ALS and ischemia), resulting in increased neuronal death. Here we test the hypothesis that CP-AMPARs contribute to RGC death due to elevated Ca(2+) influx in glaucoma. AMPA receptors are impermeable to Ca(2+) if the tetrameric receptor contains a GluA2 subunit that has undergone Q/R RNA editing at a site in the pore region. The activity of ADAR2, the enzyme responsible for this RNA editing, generally ensures that the vast majority of GluA2 proteins are edited. Here, we demonstrate that ADAR2 levels decrease in a mouse model of glaucoma in which IOP is chronically elevated. Furthermore, using an in vitro model of RGCs, we find that knockdown of ADAR2 using siRNA increased the accumulation of Co(2+) in response to glutamate, and decreased the rectification index of AMPA currents detected electrophysiologically, indicating an increased Ca(2+) permeability through AMPARs. The RGCs in primary culture also exhibited increased excitotoxic cell death following knock down of ADAR2. Furthermore, cell death was reversed by NASPM, a specific blocker for CP-AMPARs. Together, our data suggest that chronically elevated IOP in adult mice reduces expression of the ADAR2 enzyme, and the loss of ADAR2 editing and subsequent disruption of GluA2 RNA editing might potentially play a role in promoting RGC neuronal death as observed in glaucoma.
منابع مشابه
Novel Exon of Mammalian ADAR2 Extends Open Reading Frame
BACKGROUND The post-transcriptional processing of pre-mRNAs by RNA editing contributes significantly to the complexity of the mammalian transcriptome. RNA editing by site-selective A-to-I modification also regulates protein function through recoding of genomically specified sequences. The adenosine deaminase ADAR2 is the main enzyme responsible for recoding editing and loss of ADAR2 function in...
متن کاملRescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, and the lack of effective therapy results in inevitable death within a few years of onset. Failure of GluA2 RNA editing resulting from downregulation of the RNA-editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) occurs in the majority of ALS cases and causes the death of motor neurons via a Ca(2+) -...
متن کاملCo-Occurrence of TDP-43 Mislocalization with Reduced Activity of an RNA Editing Enzyme, ADAR2, in Aged Mouse Motor Neurons
TDP-43 pathology in spinal motor neurons is a neuropathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and has recently been shown to be closely associated with the downregulation of an RNA editing enzyme called adenosine deaminase acting on RNA 2 (ADAR2) in the motor neurons of sporadic ALS patients. Because TDP-43 pathology is found more frequently in the brains of elderly p...
متن کاملPin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects
ADAR2 catalyses the deamination of adenosine to inosine at the GluR2 Q/R site in the pre-mRNA encoding the critical subunit of AMPA receptors. Among ADAR2 substrates this is the vital one as editing at this position is indispensable for normal brain function. However, the regulation of ADAR2 post-translationally remains to be elucidated. We demonstrate that the phosphorylation-dependent prolyl-...
متن کاملThe molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients
TAR DNA-binding protein (TDP-43) pathology and reduced expression of adenosine deaminase acting on RNA 2 (ADAR2), which is the RNA editing enzyme responsible for adenosine-to-inosine conversion at the GluA2 glutamine/arginine (Q/R) site, concomitantly occur in the same motor neurons of amyotrophic lateral sclerosis (ALS) patients; this finding suggests a link between these two ALS-specific mole...
متن کامل